

NSMAX-GR RRM001-R2

NSMAXTM-GR <u>R</u>ecommended <u>R</u>unning <u>M</u>anual

Date	2021.01.29
Approved by	J.Hannamett
Checked by	Regent
Prepared by	岩本理六

Revision	Date	Reason
0	2018.10.01	Creation
1	2019.07.26	Company name is corrected.
2	2021.01.29	Erratum of make-up torque table is corrected

1. Remarks

This Manual describes the procedure to be followed for running NSMAX[™]-GR.

2. Preparation

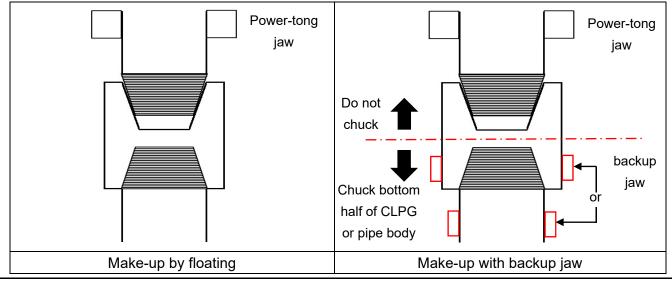
1.1 Use of following Equipment is strongly recommended

- (1) Weight compensator
- (2) Power-tong with torque & turn recording system

1.2 The following tools should be prepared

- (1) Thread compound (API modified compound or NSC approved compound)
- (2) Moustache type brush (to apply compound), Wire brush is prohibited
- (3) Stabbing guide

3. Running


3.1 Running procedure

- (1) Coupling (hereinafter, "CPLG") protector is opened and storage compound is washed off
- (2) Thread is checked, if OK, thread compound is applied
- (3) Casing is hanged to rig floor
- (4) PIN protector is opened and storage compound is washed off
- (5) Thread is checked, if OK, thread compound is applied
- (6) Alignment of PIN & CPLG is adjusted
- (7) Connections are stabbed by stabbing guide
- (8) Connections are made-up by power-tong

3.2 Thread compound volume

Refer to table 1 \sim table 4 (Section 3.7)

3.3 Jaw chucking position

@ 2021 NIPPON STEEL CORPORATION All Rights Reserved.

3.4 Grip mark

Grip mark	Pipe body	CPLG
depth	0.6mm	0.6mm

3.5 Make-up torque

Refer to table 5 $\,\sim\,$ table 6 (section3.8)

3.6 Recommended rotation speed

Thread angagement	High gear within 3RPM, if rotation was stopped (got cross thread),
Thread engagement	back off and Re make-up.
	High gear within 15 RPM.
	If cross thread was observed (over 10% of optimum torque at an
Make-up	early turns), break-out fully and inspect thread, if OK, re Make-up
Make-up	again.
	If dump valve does not work due to high rotation speed, slow
	down rotation speed to 3RPM in final 2turns.

3.7 Thread compound quantity

(table 1) Volume of thread compound

Size			Thread cor	npound (ml)
OD (")	Nominal Weight (lb/ft)	Wall Thickness	minimum	Maximum
	94	0.500 inch 12.70 mm	120	180
	105 -	0.562 inch 14.27 mm	120	180
18	117 -	0.625 inch 15.88 mm	150	230
	119 -	0.640 inch 16.26 mm	150	230
	128 -	0.688 inch 17.48 mm	150	230
	87.5	0.435 inch 11.05 mm	130	200
	94.5	0.468 inch 11.89 mm	130	200
	96.5	0.486 inch 12.34 mm	130	200
	101 -	0.510 inch 12.95 mm	130	200
-	106 -	0.531 inch 13.49 mm	130	200
18-5/8 -	109.4	0.563 inch 14.30 mm	130	200
	112	0.579 inch 14.71 mm	150	230
	115 -	0.594 inch 15.09 mm	150	230
	122 -	0.636 inch 16.15 mm	150	230
	136 -	0.693 inch 17.60 mm	150	230
	94 -	0.438 inch 11.13 mm	150	220
	106.5	0.500 inch 12.70 mm	150	220
20	117	0.563 inch 14.30 mm	- 150	220
	133 -	0.635 inch 16.13 mm	170	250
	144	0.693 inch 17.60 mm	170	250

The weight of thread compound to apply on a connection depends of the specific gravity of the used thread compound.

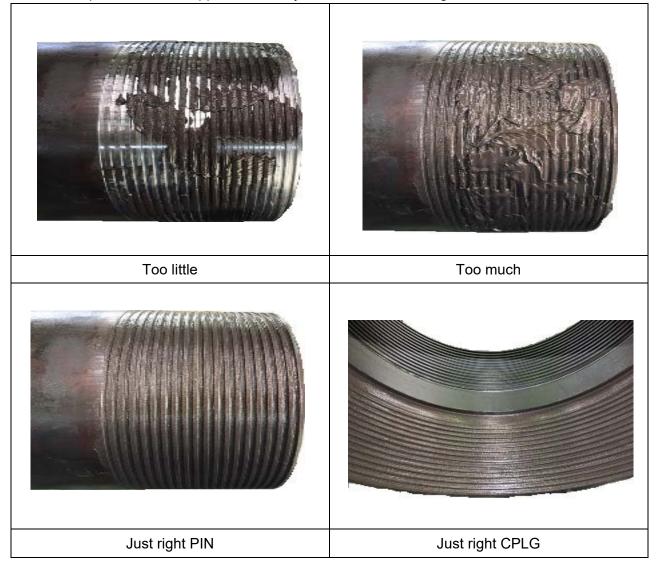
 $\ensuremath{\mathbb C}$ 2021 NIPPON STEEL CORPORATION All Rights Reserved.

	Size	Thread co	mpound (g)	
OD (")	') Nominal Weight (lb/ft) Wall Thickness			Maximum
		0.500 inch	minimum	
	94	12.70 mm	- 228	342
	105 -	0.562 inch	228	342
	105	14.27 mm	220	342
18	117	0.625 inch	285	437
10	117	15.88 mm	205	437
	119	0.640 inch	285	437
	119	16.26 mm	205	437
	128	0.688 inch	285	437
	120	17.48 mm	205	437
	87.5	0.435 inch	247	380
	87.5	11.05 mm	247	360
	04 E	0.468 inch	247	200
	94.5	11.89 mm	247	380
	00 F	0.486 inch	047	380
	96.5	12.34 mm	247	
	101	0.510 inch	0.47	200
	101	12.95 mm	- 247	380
	100	0.531 inch	047	000
40.50	106	13.49 mm	247	380
18-5/8	400.4	0.563 inch	0.47	380
	109.4	14.30 mm	247	
	440	0.579 inch	005	437
	112	14.71 mm	- 285	
	445	0.594 inch	005	407
	115	15.09 mm	- 285	437
	100	0.636 inch	005	407
	122 –	16.15 mm	- 285	437
	100	0.693 inch	005	407
	136	17.60 mm	285	437
		0.438 inch	0.05	
	94	11.13 mm	285	418
F	100 5	0.500 inch	0.05	440
	106.5	12.70 mm	- 285	418
	447	0.563 inch	0.05	440
20	117	14.30 mm	- 285	418
F	100	0.635 inch		475
	133 –	16.13 mm	323	475
F		0.693 inch		4==
	144 –	17.60 mm	323	475

(table 2) Weight of API modified thread compound (Gravity= approximately 1.90/cm³)

Size			Thread co	Thread compound (g)	
OD (")	Nominal Weight (lb/ft)	Wall Thickness	minimum	Maximum	
	94	0.500 inch	160	239	
	94	12.70 mm	100	239	
	105	0.562 inch	160	239	
	105	14.27 mm	100	239	
18	117	0.625 inch	200	306	
10	117	15.88 mm	200	500	
	119	0.640 inch	200	306	
	119	16.26 mm	200	500	
	128	0.688 inch	200	306	
	120	17.48 mm	200	500	
	87.5	0.435 inch	173	266	
	07.5	11.05 mm	175	200	
	94.5	0.468 inch	173	266	
	94.5	11.89 mm	175	200	
	96.5	0.486 inch	173	266	
	90.5	12.34 mm	175		
	101	0.510 inch	- 173	266	
	101	12.95 mm		200	
	106	0.531 inch	- 173	266	
18-5/8	100	13.49 mm		200	
10-5/0	109.4	0.563 inch	173	266	
	109.4	14.30 mm	175		
	112	0.579 inch	200	306	
	112	14.71 mm	200	300	
	115	0.594 inch	200	206	
	115	15.09 mm	200	306	
	122 -	0.636 inch	200	306	
	122	16.15 mm	200	300	
	136	0.693 inch	200	306	
	150	17.60 mm	200	300	
	94	0.438 inch	200	202	
	94	11.13 mm	200	293	
	106 5	0.500 inch	200	202	
	106.5	12.70 mm	200	293	
20	117	0.563 inch	200	202	
20		14.30 mm	200	293	
	133 -	0.635 inch	226	200	
	133	16.13 mm	220	333	
	144	0.693 inch	206	200	
	144 –	17.60 mm	226	333	

(table 3) Weight of Jet Lube HPHT (Gravity=1.33/cm³)


Size			Thread co	Thread compound (g)		
OD (")	Nominal Weight (lb/ft)	Wall Thickness	minimum	Maximum		
	94 -	0.500 inch	154	230		
	94	12.70 mm	104	230		
	105	0.562 inch	154	230		
	105	14.27 mm	104	230		
18	117	0.625 inch	192	294		
10	117	15.88 mm	192	234		
	119	0.640 inch	192	294		
	119	16.26 mm	192	234		
	128	0.688 inch	192	294		
	120	17.48 mm	192	234		
	87.5	0.435 inch		256		
	07.5	11.05 mm	100	230		
	94.5	0.468 inch	166	256		
	94.0	11.89 mm	100	250		
	96.5	0.486 inch	166	256		
	90.0	12.34 mm	100			
	101	0.510 inch	- 166	256		
	101	12.95 mm				
	106	0.531 inch	166	256		
18-5/8 -	100	13.49 mm	100	250		
10-3/0	109.4	0.563 inch	166	256		
	109.4	14.30 mm	100			
	112	0.579 inch	192	294		
	112	14.71 mm	192	294		
	115	0.594 inch	192	294		
	115	15.09 mm	192			
	122	0.636 inch	192	294		
	122	16.15 mm	192	294		
	136	0.693 inch	192	294		
	150	17.60 mm	192	294		
	94	0.438 inch	192	282		
	94	11.13 mm	192	202		
	106.5	0.500 inch	192	282		
	100.5	12.70 mm	192	202		
20	117 -	0.563 inch	192	202		
20		14.30 mm	192	282		
	133 -	0.635 inch	218	220		
	133	16.13 mm	210	320		
	144 –	0.693 inch	210	320		
	144	17.60 mm	218	320		

(table 4) Weight of Jet Lube Run N Seal ECF (Gravity=1.28/cm³)

Other thread compounds (especially red or yellow thread compounds) may be used. Please contact NSC.

Ratio of total thread compound volume = 40% to 50% on PIN, 50% to 60% on CPLG Thread compound must be applied uniformly to thread as bellow fig.

R2

NSMAX-GR RRM001-R2

3.8 Make-up torque

Size		Make	Make-up Torque (ft.lb.)		Make-up Torque (N.m.)			
OD (inch)	Weight (lb/ft)	Wall Thickness	Min.	Opt.	Max.	Min.	Opt.	Max.
	94	0.500 inch 12.70 mm	15,570	17,300	19,030	21,120	23,460	25,810
	105	0.562 inch 14.27 mm	17,190	19,100	21,010	23,310	25,900	28,490
18	117	0.625 inch 15.88 mm	23,850	26,500	29,150	32,340	35,930	39,530
	119	0.640 inch 16.26 mm	24,390	27,100	29,810	33,070	36,750	40,420
	128	0.688 inch 17.48 mm	25,920	28,800	31,680	35,150	39,050	42,960
	87.5	0.435 inch 11.05 mm	14,850	16,500	18,150	20,140	22,380	24,610
	94.5	0.468 inch 11.89 mm	14,940	16,600	18,260	20,260	22,510	24,760
	96.5	0.486 inch 12.34 mm	15,570	17,300	19,030	21,120	23,460	25,810
	101	0.510 inch 12.95 mm	16,290	18,100	19,910	22,090	24,550	27,000
18-5/8	106	0.531 inch 13.49 mm	16,920	18,800	20,680	22,950	25,490	28,040
10 0/0	109.4	0.563 inch 14.30 mm	17,730	19,700	21,670	24,040	26,710	29,390
	112	0.579 inch 14.71 mm	22,950	25,500	28,050	31,120	34,580	38,040
	115	0.594 inch 15.09 mm	23,580	26,200	28,820	31,980	35,530	39,080
	122	0.636 inch 16.15 mm	25,290	28,100	30,910	34,290	38,100	41,910
	136	0.693 inch 17.60 mm	27,360	30,400	33,440	37,100	41,220	45,340
	94	0.438 inch 11.13 mm	15,750	17,500	19,250	21,360	23,730	26,100
	106.5	0.500 inch 12.70 mm	16,650	18,500	20,350	22,580	25,090	27,600
20	117	0.563 inch 14.30 mm	18,540	20,600	22,660	25,140	27,930	30,730
	133	0.635 inch 16.13 mm	26,370	29,300	32,230	35,760	39,730	43,700
	144	0.693 inch 17.60 mm	28,440	31,600	34,760	38,560	42,850	47,130

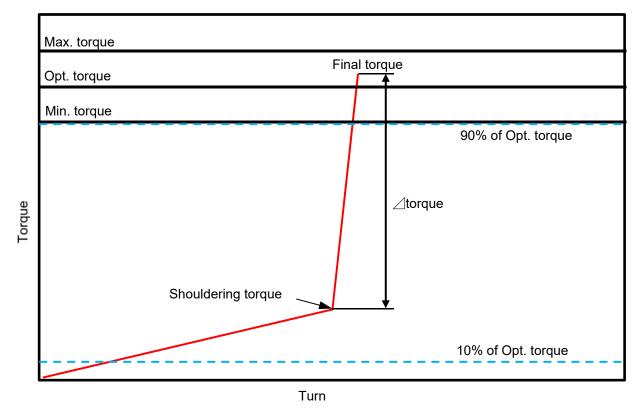
(table 5) Make-up torque table of 55 ksi grade

 $\ensuremath{\mathbb C}$ 2021 NIPPON STEEL CORPORATION All Rights Reserved.

R2

NSMAX-GR RRM001-R2

(table 6) Make-up torque t	table of 95 ksi grade
----------------------------	-----------------------


Size			Make	Make-up Torque (ft.lb.)		Make-up Torque (N.m.)		
OD (inch)	Weight (lb/ft)	Wall Thickness	Min.	Opt.	Max.	Min.	Opt.	Max.
	94	0.500 inch 12.70 mm	25,470	28,300	31,130	34,540	38,370	42,210
	105	0.562 inch 14.27 mm	28,170	31,300	34,430	38,200	42,440	46,690
18	117	0.625 inch 15.88 mm	36,090	40,100	44,110	48,940	54,370	59,810
	119	0.640 inch 16.26 mm	36,900	41,000	45,100	50,030	55,590	61,150
	128	0.688 inch 17.48 mm	39,240	43,600	47,960	53,210	59,120	65,030
	87.5	0.435 inch 11.05 mm	24,930	27,700	30,470	33,810	37,560	41,320
	94.5	0.468 inch 11.89 mm	25,110	27,900	30,690	34,050	37,830	41,620
	96.5	0.486 inch 12.34 mm	25,290	28,100	30,910	34,290	38,100	41,910
	101	0.510 inch 12.95 mm	26,460	29,400	32,340	35,880	39,870	43,850
18-5/8	106	0.531 inch 13.49 mm	27,450	30,500	33,550	37,220	41,360	45,490
	109.4	0.563 inch 14.30 mm	28,890	32,100	35,310	39,170	43,530	47,880
	112	0.579 inch 14.71 mm	39,150	43,500	47,850	53,090	58,980	64,880
	115	0.594 inch 15.09 mm	40,140	44,600	49,060	54,430	60,470	66,520
	122	0.636 inch 16.15 mm	40,140	44,600	49,060	54,430	60,470	66,520
	136	0.693 inch 17.60 mm	40,680	45,200	49,720	55,160	61,290	67,420
	94	0.438 inch 11.13 mm	27,630	30,700	33,770	37,470	41,630	45,790
	106.5	0.500 inch 12.70 mm	27,900	31,000	34,100	37,830	42,040	46,240
20	117	0.563 inch 14.30 mm	30,960	34,400	37,840	41,980	46,650	51,310
	133	0.635 inch 16.13 mm	40,500	45,000	49,500	54,920	61,020	67,120
	144	0.693 inch 17.60 mm	40,770	45,300	49,830	55,280	61,420	67,570

 $\ensuremath{\mathbb C}$ 2021 NIPPON STEEL CORPORATION All Rights Reserved.

4. Make-up chart

4.1 Make-up chart acceptance criteria

When make-up chart meets following standards, make-up is accepted.

- (1) Final torque must be between Min. torque and Max. torque.
- (2) Shouldering torque must be between 10% of Opt. torque and 90% of Opt. torque.
- (3) \triangle toque \geq 5% of Opt. torque

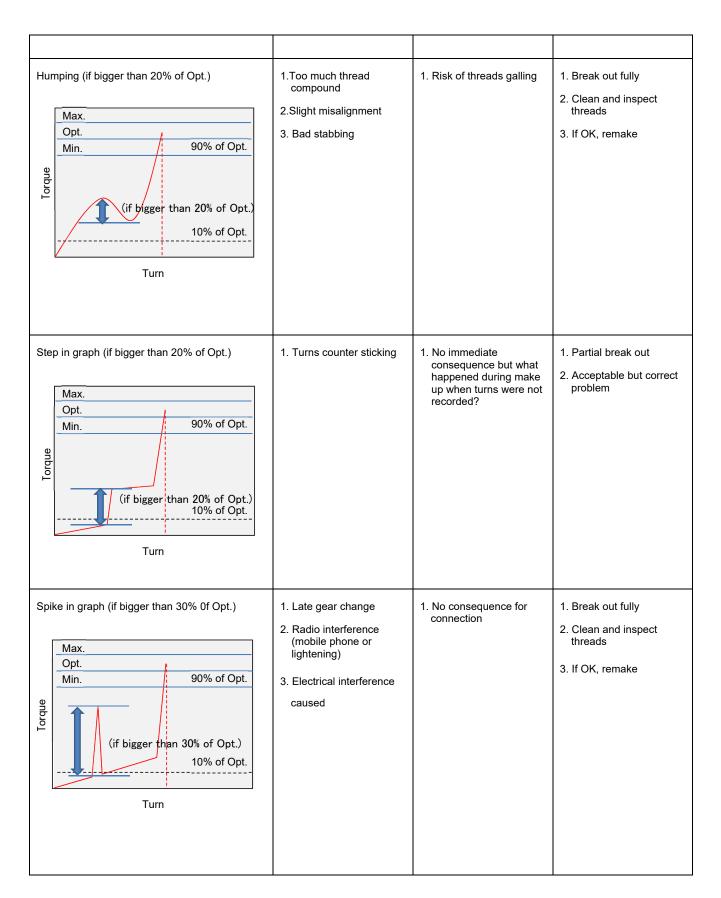
IF make-up chart was Unacceptable make-up chart (refer to 4.2 Unacceptable make-up chart), Break-out fully and inspect thread. If no galling was observed, remake-up again.

In case of break-out and inspect thread, following criteria should be applied:

- The connection must be free of heavy damage
- For the threads, no severe galling but minor or partial galling and light damage (scratches, indentations, knocks) are acceptable and can be dressed up with a small file or a hone, provided that the defect can be completely removed, to blend with the original profile.
- Stabbing, hand-tight and make-up damages on front 3 threads area (25.4mm) of PIN is acceptable, if it is not heavy protrusions, since that area is non-thread seal area.

4.2 Unacceptable make-up chart

Unacceptable make-up graph	Possible Causes	Consequences	Remedial Actions
Low Final Torque with shoulder contact	 Wrong dump valve setting Unable to select low gear Operator stopped make-up 	1. Risk of back out 2. Risk of leak	 Breakout fully Clean and inspect threads If OK, remake
Low final torque with no shoulder contact	 Wrong dump valve setting Unable to select low gear Operator stopped make-up 	1. Risk of back out 2. Risk of leak	 Break out fully Clean and inspect threads If OK, remake
Yielding / Plastic deformation	 Bad load cell calibration Wrong torque values entered Mixing interchangeable connection with big difference in weight or grade Wrong connection types 	 Risk of jump in Risk of coupling parting Risk of leak No drift –damage to pin and box shoulder area 	 Break out fully Clean threads Visual inspect counter bore for deformation If OK, remake



NSMAX-GR RRM001-R2

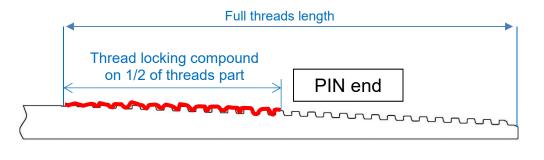
High final torque	1. Bad load cell calibration	1. Risk of coupling parting	1. Break out fully
Max.	 Wrong dump valve setting 		2. Clean threads
Opt.			3. Visual inspect counter bore for deformation
Min. 90% of Opt.			
٩			4. If OK, remake to correct torque
Iorque			
10% of Opt.			
Turn			
Low shoulder torque or no shoulder torque	1. Friction factor <1.0	1. Risk of back out	1. Break out fully
	2. Wrong type of thread	2Risk of leak	2. Clean and inspect
Max.	compound		threads
Opt. Min. 90% of Opt.	3. Compound not stirred		3. If OK, remake
	4. Compound too hot		
Iorque	5. Compound		
Ρ́	contaminated		
10% of Opt.	6. Wrong torque values		
	7.Wrong connection types		
Turn			
High shoulder torque or no shoulderling	1. Wrong type of thread compound	1. Risk of leak	1. Break out fully
High shoulder torque or no shoulderling	compound	1. Risk of leak 2. Risk of threads galling	2. Clean and inspect
			2. Clean and inspect threads
Max.	compound 2. Not enough thread		2. Clean and inspect
Max. Opt. Min. 90% of Opt.	compound 2. Not enough thread compound		2. Clean and inspect threads
Max. Opt. Min. 90% of Opt.	 compound Not enough thread compound Compound too cold 		2. Clean and inspect threads
Max. Opt.	 compound Not enough thread compound Compound too cold Compound not stirred 		2. Clean and inspect threads
Max. Opt. Min. 90% of Opt.	 compound 2. Not enough thread compound 3. Compound too cold 4. Compound not stirred 5. Friction factor >1.0 6. Girt/dirt in thread 		2. Clean and inspect threads
Max. Opt. Min. 90% of Opt.	 compound 2. Not enough thread compound 3. Compound too cold 4. Compound not stirred 5. Friction factor >1.0 6. Girt/dirt in thread compound 		2. Clean and inspect threads
Max. Opt. Min. 90% of Opt.	 compound 2. Not enough thread compound 3. Compound too cold 4. Compound not stirred 5. Friction factor >1.0 6. Girt/dirt in thread compound 7. Bad load cell calibration 		2. Clean and inspect threads
Max. Opt. Min. 90% of Opt. 10% of Opt.	 compound 2. Not enough thread compound 3. Compound too cold 4. Compound not stirred 5. Friction factor >1.0 6. Girt/dirt in thread compound 7. Bad load cell calibration 8. Wrong torque values 		2. Clean and inspect threads
Max. Opt. Min. 90% of Opt. 10% of Opt.	 compound 2. Not enough thread compound 3. Compound too cold 4. Compound not stirred 5. Friction factor >1.0 6. Girt/dirt in thread compound 7. Bad load cell calibration 8. Wrong torque values 9. Wrong tong arm setting 10. Misalignment between 		2. Clean and inspect threads
Max. Opt. Min. 90% of Opt. 10% of Opt.	 compound 2. Not enough thread compound 3. Compound too cold 4. Compound not stirred 5. Friction factor >1.0 6. Girt/dirt in thread compound 7. Bad load cell calibration 8. Wrong torque values 9. Wrong tong arm setting 10. Misalignment between pin and box 11. Threads not clean 		2. Clean and inspect threads
Max. Opt. Min. 90% of Opt. 10% of Opt.	 compound 2. Not enough thread compound 3. Compound too cold 4. Compound not stirred 5. Friction factor >1.0 6. Girt/dirt in thread compound 7. Bad load cell calibration 8. Wrong torque values 9. Wrong tong arm setting 10. Misalignment between pin and box 11. Threads not clean 12. Threads galled 		2. Clean and inspect threads
Max. Opt. Min. 90% of Opt. 10% of Opt.	 compound 2. Not enough thread compound 3. Compound too cold 4. Compound not stirred 5. Friction factor >1.0 6. Girt/dirt in thread compound 7. Bad load cell calibration 8. Wrong torque values 9. Wrong tong arm setting 10. Misalignment between pin and box 11. Threads not clean 		2. Clean and inspect threads

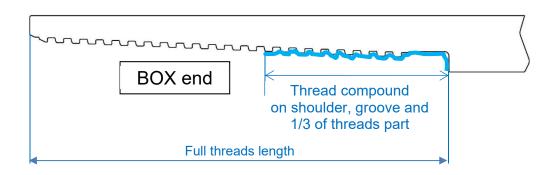
 $\ensuremath{\mathbb C}$ 2021 NIPPON STEEL CORPORATION All Rights Reserved.

5. Thread locking compound

If thread locking compound is required, the following processes have to be carried out.

5.1 Usage of thread locking compound

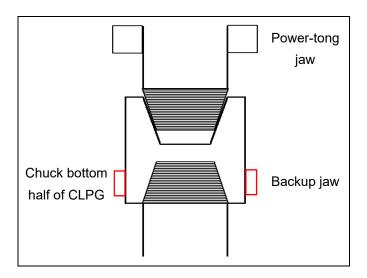

- (1) Thread locking compound with friction factor equal or above 1.0 is selected
- (2) Normal Optimum torque x 1.3 is set to new Optimum torque
- (3) New Optimum torque x 1.1 is set to new Maximum torque
- (4) Dump torque is changed to new Optimum torque
- (5) Thread compound is applied on CPLG shoulder and firsts threads (1/3 of threads part)
- (6) Thread locking compound is applied on imperfect threads and first perfect thread of PIN end (half of threads part)
- (7) Make-up


5.2 acceptance criteria

riangletorque riangle 20% of normal Optimum torque

For example, in the case of 18 5/8" x 101# NT-95DE NSMAX[™]-GR, use the torque value (ft.lbs) as shown below.

compound	Maximum	Minimum	Optimum	Maximum
	Shoulder	Torque	Torque	Torque
Normal thread compound	23,520	26,460	29,400	32,340
Thread lock with FF≧1.0	$ riangle$ torque \ge 5,880		38,220	42,042


@ 2021 NIPPON STEEL CORPORATION All Rights Reserved.

NSMAX-GR RRM001-R2

6. Break-out

6.1 Break-out procedure

- (1) Alignment of PIN & CPLG is adjusted
- (2) Pipe & CPLG is chucked as bellow

- (3) Break-out 4turns by low gear
- (4) Break-out fully by chain tong

End of documents

